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Dynamical weight functions for a planar crack
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The stress intensity factors are evaluated for a moving planar crack for loadings which vary arbitrarily in
time and three dimensions of space. We exploit the adjoint elasticity equation obeyed by the corresponding
weight functions, and a new and more universal Wiener-Hopf factorization of the Rayleigh function, this being
the central difficulty in such calculations. For the mode II weight function we give further asymptotic results
crucial to a subsequent calculation of crack stability with respect to out-of-plane perturbations.

PACS number~s!: 46.50.1a, 62.20.Mk, 05.45.2a, 83.50.2v
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I. INTRODUCTION

The first part of our work revolves around the calculati
and properties of the dynamical weight functions. Weig
functions are Green functions which by definition return t
stress intensity factors at a pointZ along the crack tip and
time T for a given volume forcef and boundary tractiong
@1#, e.g., for mode I,

K I~T,Z!5E dtE
V

d3x WI~T,Z,t,x!• f ~ t,x!

1E dtE
]V

dSWI„T,Z,t,x~S!…•g„t,x~S!…,

~1!

whereV and ]V are the domain and the boundary of t
cracking material, and analogously for modes II and III.

We will take our crack to propagate in thex direction in
the x,z plane, with the crack edge along thez direction and
the normal to the fracture plane in they direction. Then
qualitatively, in terms of stress components diverging ah
of the crack,K I corresponds to normal stresses~notably
syy), K II to shearing in thex direction (sxy) and K III to
shearing in thez direction (syz).

Type I crack propagation, driven byK I , is the most natu-
ral case to consider as its stress field has the full symmetr
the planar crack geometry. The pure type II stress field
antisymmetric with respect to they direction ~out of plane!,
and henceK II plays a central role in the discussion of th
stability of type I cracks with respect to out-of-plane pertu
bation. For this reason the full type II weight function is
crucial input to the crack stability calculations of our follow
ing paper@2#, and we discuss it here in greatest detail. W
include an evaluation of type I and III weight functions in th
present paper for completeness. In our following paper
consider the self-consistent evolution of a perturbed cr
through the surfacey5h(x,z), to first order inh(x,z); for
stability, elementary self-consistent solutions must decre
asx increases.

The most general definition of a weight functionW is that
W(x,y,z,t)•p returns some particular stress intensity fac
PRE 611063-651X/2000/61~1!/298~14!/$15.00
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at some particular time and position along the edge of
crack, in response to a point impulsep applied to the mate-
rial at x,y,z,t. The direct approach to computingW would
be to to compute the full displacement field resulting fro
the impulse, and then to extract the stress intensity factor
the coefficients of its leading behavior around the crack
This could all be done via the full elastic Green function
the material~with its time dependent boundary!, which di-
rectly gives the displacements resulting from arbitra
forces; extracting the stress intensity factors then amount
taking a projection from the Green function.

It follows that the weight functions inherit from the Gree
function the property that they obey the equations of elas
ity ~strictly their adjoint, but they are self-adjoint!

]2

]t2
W2“•C:“W50 in V

and

n•C:“W50 on ]V, ~2!

whereC is the elasticity tensor andn the boundary surface
normal. Discussion of inhomogeneous terms at the crack
inherited from the Green function equation, is obviated
requiring the weight functions to match the near cra
asymptotic form of simple known cases.

The approach outlined above is not dependent on any
ticular crack shape or motion~provided it is specified!, nor
material inhomogeneity or isotropy. Historically it was fir
communicated in the context of quasi-static cracks
Bueckner@3# in 1970 and by Rice@4# in 1972 as a corollary
of Betti’s theorem@1#. It was actually used by Bueckner@5#
to calculate the quasistatic~i.e., negligible velocity! weight
functions and by Freund@1# to calculate the two-dimensiona
weight functions for time-dependent loadings. The gene
space and time dependent case for a moving crack was
cussed explicitly by Willis and Mouvchan@6,7#, but in a
representation where the equations of elasticity appear n
self-adjoint. Strictly speaking it is the adjoint of the elastici
equations which appears in Eq.~2!; see also Ref.@8#. As a
result the simple general form of Bueckner’s results rem
under appreciated.

For a planar crack the conditions across the fracture pl
present a natural problem for the application of Wiener-Ho
298 ©2000 The American Physical Society
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techniques, with boundary conditions applying over the fr
tured half of the plane and continuity conditions applyi
across the unfractured half. We refer the reader to Freu
@1# book for a good introduction to the Wiener-Hopf tec
nique in this context.

Willis and Mouvchan already published a calculation
the dynamical surface weight functions~corresponding to
loadings on the crack surface only! along these lines, leadin
to results in terms of one coordinate dependent quadra
Our work differs in using a new and more explicit factoriz
tion of the Rayleigh function, which is universal up to d
pendence on Poisson’s ratio. This leads to significantly m
explicit results for all three weight functions, which in th
case of mode II are crucial for crack stability calculations
our following paper. We also go beyond Willis and Mo
vchan in considering loadings applied to points inside
material, rather than just on the fracture surface. Our m
results are given explicitly iny, but Fourier-Laplace trans
formed with respect tox, z, and t. In the type II case we
elaborate further detail at the crack surface, and also in te
of x andy near the crack tip.

In the context of weight functions we find it useful t
distinguish between the quasistatic case, that is zero c
velocity, and the dynamical weight functions for general v
locity. In either case, we distinguish further between~1! the
two-dimensional weight function~a function ofx,y), corre-
sponding to loadings uniformly distributed over the third d
mensionz if any, or kz50 in Fourier terms;~2! the surface
weight function~a function ofx,z), corresponding to load
ings on the crack faces in three dimensions; and~3! the gen-
eral three-dimensional weight function for loadings ar
trarily located inx, y, andz.

II. MODE II WEIGHT FUNCTION FOR A MOVING
CRACK AND TIME-DEPENDENT LOADINGS

Our calculation of the weight functions is based on t
fact that the dynamical weight function for a moving plan
crack is determined by the homogeneous equations of e
ticity and the leading order divergence near the crack tip.
hereby avoid loading contributions in the Wiener Hopf equ
tions. The discussion of the weight function properties in
quasistatic case@8# translates similarly to the dynamica
crack. Hence we are looking for a solution of the homog
neous equations of elasticity which generates zero load
on the crack face and which diverges as 1/Ar near the crack
tip. The remaining undetermined constant can be found
comparison with the known two-dimensional weight fun
tion. Here we present details for the mode II case. The
aptation to modes I and III is straightforward, and we colle
results for all three cases in Sec. III below.

Our strategy to obtain the dynamical weight function
Fourier space consists of four steps. First, we express
weight function in terms of the Lame´ potentials for which
the equations of elasticity translate into two sets of wa
equations and the corresponding boundary conditions. S
ond, we establish the correspondence between semi-infi
support in real space and~upwards or downwards! analytic-
ity in Fourier space. Third, we use the boundary conditio
to arrive at two~decoupled! sets of Wiener-Hopf equation
for the Lamépotentials. In each Wiener-Hopf equation w
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have terms with mixed upwards and downwards analytic
The key to unraveling the Wiener-Hopf equations into
downward analytic function on one side of the equation a
an upward analytic function on the other is to factorize t
Rayleigh function. We can then use the identity theorem
continue each side analytically in the whole complex pla
In the fourth and last step, we apply Liouville’s theorem
arrive at the final expressions for the Fourier transform
Lamé potentials. We then substitute the Lame´ potentials to
obtain the components of the mode II weight function.

In our first step we express the weight functionWII and
the generated stress fields5C:“WII in terms of the Lame´
potentialsF andC ~see also Freund’s book@1#!,

WII, x5
]F

]x
1

]C3

]y
2

]C2

]z
,

WII, y5
]F

]y
1

]C1

]z
2

]C3

]x
, WII, z5

]F

]z
1

]C2

]x
2

]C1

]y
,

~3!

where the vector fieldC must satisfy the additional gaug
condition“•C50:

sxy

m
52

]2F

]x]y
1

]2C3

]y2
2

]2C2

]y]z
2

]2C3

]x2
1

]2C1

]x]z
, ~4!

syy

m
5

cD
2

cS
2

¹2F22
]2F

]z2
22

]2F

]x2
12

]2C1

]y]z
22

]2C3

]x]y
, ~5!

syz

m
52

]2F

]y]z
1

]2C1

]z2
2

]2C3

]x]z
2

]2C1

]y2
1

]2C2

]x]y
. ~6!

The remaining stress components are not listed here as
do not enter the boundary conditions~they can be found in
Freund’s book@1#!. As all the derivatives above are at co
stant timet we are at liberty to replacex by the variableX
5x2vt in the comoving frame.

In what follows we work in the comoving frame of refe
ence and all fields are Fourier transformed with respec
their z coordinate. As from the symmetry of mode II w
know that the first and second components of the mod
weight function are symmetric inz, whereas the third com
ponent is antisymmetric. Applying this symmetry to thez
dependence, for a single Fourier component we can writ

F~X,y,z,t !5F~X,y,t !cos~kzz!,

C1~X,y,z,t !5C1~X,y,t !sin~kzz!,
~7!

C2~X,y,z,t !5C2~X,y,t !sin~kzz!,

C3~X,y,z,t !5C3~X,y,t !cos~kzz!.

In the comoving frame, the potentials obey the wave eq
tions

F 1

cD
2 S ]

]t
2v

]

]XD 2

2S ]2

]X2
1

]2

]y2
2kz

2D GF50, ~8!
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F 1

cS
2 S ]

]t
2v

]

]XD 2

2S ]2

]X2
1

]2

]y2
2kz

2D GC50, ~9!

wherecD andcS are the dilation and shear wave speeds a
the vector fieldC has been taken to satisfy the gauge co
dition “•C50.

In our second step, we consider symmetries with resp
to y and establish the analyticity properties of the weig
function and the generated stress fields in Fourier space.
first and third components ofWII are antisymmetric iny @in
the sensef (2y)52 f (y)#, whereas the second component
symmetric. On the upper crack surface and its continua
ahead of the crack (y501) we have

WII, x5H 0, X.0

Wx
2~X,t !cos~kzz!, X,0

and

WII, z5H 0, X.0

Wz
2~X,t !sin~kzz!, X,0.

~10!

The minus~or plus! sign in the upper index indicates that th
function is nonzero for negative~or positive! X only. Clearly,
it suffices to work in the upper half space (y>0) since the
corresponding fields in the lower half space can be obtai
by symmetry. These symmetries with respect toy and the
zero loadings on the crack face (X<0) yield the following
boundary conditions on the upper surfacey501:

sxy5H sxy
1 ~X,t !cos~kzz!, X.0

0, X,0,
syy50,

syz5H syz
1 ~X,t !sin~kzz!, X.0

0, X,0.
~11!

The plus index indicates thatsxy is zero for X<0 and y
50, for example. We now apply a~two-sided! Laplace
transform in time and a Fourier transform inX to the fields
F, C, WII , ands. Our convention for the two-side Laplac
transform and the Fourier transform inX is given by

F~X,y,t !5E
c2 i`

c1 i`

ds est
1

2pE2`

`

dkxe
ikxXF̂~s,y,kx!

~12!

and

F̂~s,y,kx!5E
2`

0

dt e2stE
2`

`

dX e2 ikxXF~X,y,t !. ~13!

Note that we have used the causality of the weight functi
in the last equation, i.e., only past loadings contribute to
stress intensity factor. Hence the upper limit of the integra
0 instead of̀ .

By comparison with the quasistatic weight function@8#
we anticipate that the~with respect toz Fourier transformed!
weight function, and hence the stress fields, are exponen-
tially bounded inX, say bye2auXu. This means that the Fou
rier transform ofW2 is analytic in the upper complex plan
d
-

ct
t
he

n

d

s
e
s

for Im(kx).2a, and the Fourier transform ofs1 is analytic
in the lower complex plane as Im(kx),a. This motivates
the notationŴu(kx) for the Fourier transform ofW2 and
ŝd(kx) for the Fourier transform ofs1, respectively.

The solutions of the transformed wave equations~8! and
~9!, which are bounded in the upper half planey>0, are
given by

F̂~kx ,y,s!5F̂~kx ,s!e2gDy, Ĉ~kx ,y,s!5Ĉ~kx ,s!e2gSy,
~14!

where

gD
2 5kx

21kz
21

1

cD
2 ~s2v ikx!

2,

gS
25kx

21kz
21

1

cS
2 ~s2v ikx!

2. ~15!

We also use the definition

an5A12
v2

cn
2
, n5S,D,R. ~16!

In the third step, we turn our attention to the bounda
conditions which yield the final Wiener-Hopf equation
First we set the solutions in Eqs.~14! into the transformed
equations~4!–~6!. Then we rewrite the boundary equation
in terms of the newly defined potentials

x15kz

ŝxy

m
1 ikx

ŝyz

m
, x25 ikx

ŝxy

m
1kz

ŝyz

m
,

~17!
L15kzŴII, x1 ikxŴII, z , L25 ikxŴII, x1kzŴII, z .

The reason for introducing the new potentials is to decou
the final Wiener-Hopf equations later in the calculation. T
boundary (y501) values ofx andL are given in terms of
those ofF andC:

x1
d5gS

2~kzĈ32 ikxĈ1!1~kz
21kx

2!gSĈ2 , ~18!

x2
d52~kz

21kx
2!gDF̂1~gS

21kz
21kx

2!~ ikxĈ32kzĈ1!,
~19!

L1
u52~kz

21kx
2!Ĉ22gS~kzĈ32 ikxĈ1!, ~20!

L2
u52~kz

21kx
2!F̂2gS~ ikxĈ32kzĈ1!, ~21!

and the boundary conditions are implied by the upwards~u!
or downwards~d! analyticity ofx1 , x2 , L1, andL2, respec-
tively. Additionally, we haveŝyy50 and the gauge condi
tion 05“•C, i.e.,

05~gS
21kz

21kx
2!F̂12gS~ ikxĈ32kzĈ1!, ~22!

052 ikxĈ11gSĈ21kzĈ3 . ~23!

Elimination of F̂ andĈ from Eqs.~18!–~23! yields
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x1
d52gSL1

u , ~24!

x2
d52

r ~kx!

gS~gS
22kz

22kx
2!

L2
u , ~25!

where

r ~kx!5~kz
21kx

21gS
2!224gSgD~kx

21kz
2!. ~26!

Equations~24! and ~25! are crucial because they encode t
weight function as a pair of Wiener-Hopf problems~see be-
low!. Given solutions forL1 andL2, we can then substitute
back to obtain the Fourier transformed components of
weight function.

The spirit of the Wiener-Hopf calculation rests on t
splitting of the factorsgS in Eq. ~24! and r (kx)/gS(gS

22kz
2

2kx
2) in Eq. ~25! into a product of a downwards and a

upwards analytic function. The Wiener-Hopf factorization
Eq. ~24! is

gS5gS
ugS

d5AaSi „ivu~cS!2kx…AaSi „kx2 ivd~cS!…,
~27!

where

vu~cn!5vuS cn ,
s

vukzu
D

5
ukzu

an
2 F s

vukzu
v2

cn
2

2Aan
21S s

vukzu
D 2v2

cn
2 G ,

~28!

vd~cn!5vdS cn ,
s

vukzu
D

5
ukzu

an
2 F s

vukzu
v2

cn
2

1Aan
21S s

vukzu
D 2v2

cn
2 G ,

wheren5S,D,R, and ivu(cn) and ivd(cn) are the branch
points ofgn

u andgn
d , respectively. Note thativu(cn) lies in

the lower half-plane but corresponds to the branch analyti
the upper half-plane, and vice versa, forivd(cn). Note that
we chose the branch cut of the complex square root to b
the negative real axis. With this definition the first squa
root in Eq. ~27! is upward analytic, whereas the second
downward analytic.

A key difficulty in our evaluation consists of factorizin
the second Wiener-Hopf equation in Eq.~25!, that is, the
factorization of the Rayleigh functionr (kx) into downward
and upward sectionally analytic functions. Following Freu
@1# the factorization takes the form

r ~kx!52DS ikx2
s

v D 2

„ikx1vu~cR!…

3„ikx1vd~cR!…Su~kx!S
d~kx!, ~29!

wherevu andvd are defined in Eq.~27!; this renders explicit
all the zeros ofr (kx) and the constantD54aSaD2(1
1aS

2)2 is chosen such thatSu(kx)S
d(kx)→1 as ukxu→`.

The factorSu(kx) is upward analytic and the factorSd(kx) is
e

f

in

on
e

downward analytic. Obtaining explicit expressions or a
proximations ofSu(kx) and Sd(kx) is the major computa-
tional challenge, which we discuss in Sec. IV below.

We can now decompose the Wiener-Hopf equations
Eqs.~24! and~25! into upward and downward analytic func
tions with a joint strip of analyticity:

1

gS
d
x1

d52gS
uL1

u , ~30!

gS
d

„ikx1vd~cR!…Sd
x2

d5
D

12aS
2

„ikx1vu~cR!…Su

gS
u

L2
u . ~31!

According to the identity theorem in complex analysis, ea
side in Eq.~30! is analytic in the whole complex plane.

We have now arrived at the fourth and last step of
Wiener-Hopf calculation, that is, the identification ofL1 and
L2 on the grounds of Liouville’s theorem and boundedne
arguments. As in the quasistatic case@8#, we know by di-
mensional arguments that the most divergent term of
three-dimensional weight function in real space diverges
1/Ar , and it is identical to the two-dimensional weight fun
tion. As the two-dimensional weight function has a zeroz
component, we conclude thatWII, z;Ar as r 5Ax21y2

→0. The other components in real space diverge likeWII, x

;1/Ar , WII, y;1/Ar , and hence,sxy;1/rAr and syz

;1/Ar as r→0. Therefore, L1;kz /Akx, L2;Akx, x1

;kzAkx, and x2;kxAkx as ukxu→`. Applying Liouville’s
theorem to the analytic functions in Eq.~30!, we have

1

gS
d
x1

d5c0kz52gS
uL1

u , ~32!

gS
d

„ikx1vd~cR!…Sd
x2

d5c0c1ukzu1c0c2ikx

5
D

12aS
2

„ikx1vu~cR!…Su

gS
u

L2
u ,

~33!

where we have defined the Liouville constants such thatc0 ,
c1, andc2 are dimensionless quantities. The constantsc1 and
c2 are determined in the following, whereas we are left w
an overall constantc0 as we work with the homogeneou
equations of elasticity. Combining Eqs.~32!, ~32!, and ~17!

we obtainŴII, x andŴII, z on y501:

ŴII, x~kx,0
1,kz!

c0
5

1

kx
21kz

2

3F2
kz

2

gS
u

2
12aS

2

D

ikx~c1ukzu1c2ikx!

„ikx1vu~cR!…

gS
u

SuG
~34!
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ŴII, z~kx,0
1,kz!

c0
5

1

kx
21kz

2

3F ikxkz

gS
u

1
12aS

2

D

kz~c1ukzu1c2ikx!

„ikx1vu~cR!…

gS
u

SuG .

~35!

Likewise, for the generated stress fieldsŝxy andŝyz we have

ŝxy

c0m
5

1

kx
21kz

2 S kz
2gS

d2 ikx

„ikx1vd~cR!…Sd

gS
d

3~c1ukzu1c2ikx!D , ~36!

ŝyz

c0m
5

1

kx
21kz

2 S 2 ikxkzgS
d1kz

„ikx1vd~cR!…Sd

gS
d

3~c1ukzu1c2ikx!D . ~37!

At this point, we can determine the constantsc1 andc2. We
recall thatŴII, x andŴII, z are upward analytic functions, bu
in Eqs.~34! and~35! both appear to have a pole in the upp
half plane atkx5 i ukzu. To remove the pole the term i
square brackets must be zero atkx5 i ukzu,

05kz
2D„ikx1vu~cR!…Su~kx!

1~12aS
2!„gS

u~kx!…
2ikx~c1ukzu1c2ikx!, ~38!

at kx5 i ukzu. Similarly, we know thatŝxy andŝyz are down-
ward analytic functions, and hence, the numerators in E
~36! and ~37! must be zero atkx52 i ukzu,

05kz
2
„gS

d~kx!…
22 ikx„ikx1vd~cR!…~c1ukzu1c2ikx!S

d~kx!,
~39!

at kx52 i ukzu. Equations~38! and ~39! determine the con-
stantsc1 andc2:

c15c1S s

vukzu
D5

1

2 F2
D

aS~12aS
2!

„ukzu2vu~cR!…Su~ i ukzu!

„ukzu2vu~cS!…

1
aS„ukzu1vd~cS!…

„ukzu1vd~cR!…Sd~2 i ukzu!
G , ~40!

c25c2S s

vukzu
D5

1

2 F D

aS~12aS
2!

„ukzu2vu~cR!…Su~ i ukzu!

„ukzu2vu~cS!…

1
aS„ukzu1vd~cS!…

„ukzu1vd~cR!…Sd~2 i ukzu!
G . ~41!

In the last step of our calculation we substitute back into

potentialsF̂ andĈ in Eqs.~18!–~22!. We then use Eq.~3! to
r

s.

e

obtain the final expressions for all components of the Fou
transformed mode II weight function:

ŴII, x~kx ,y,kz!5
2ikxL2

gS
22kx

22kz
2 ~e2gDy2e2gSy!

1
kzL12 ikxL2

kx
21kz

2
e2gSy, ~42!

ŴII, y~kx ,y,kz!5
L2

gS~gS
22kx

22kz
2!

3@~gS
21kx

21kz
2!e2gSy22gDgSe2gDy#,

~43!

ŴII, z~kx ,y,kz!5
2kzL2

gS
22kx

22kz
2 ~e2gSy2e2gDy!

1
kzL22 ikxL1

kx
21kz

2
e2gSy, ~44!

wherey>0 andL1 andL2 are defined in Eq.~17!. Explic-
itly, they are given in Eqs.~32! and ~33!. At y501 we
recover the earlier results forŴII, x andŴII, z in Eqs.~34! and
~35!.

Finally, we shall determine the unknown constantc0. For
this purpose it is sufficient to evaluate the 3D weight fun
tion at y501 ands50 in the 2D limit kz→0. If we apply
this procedure toŴII, x in Eq. ~42! we obtain

ŴII, x~kx!52 i
12aS

2

D
AaSc0c2~0,an!

A2 ikx

kx
. ~45!

Comparison with the known Fourier transformed 2D weig
function in Appendix C yields

c052
D

A2aS~12aS
2!

1

c2~0,an!
. ~46!

III. EXPLICIT FOURIER-TRANSFORMED WEIGHT
FUNCTIONS

The weight functions for modes I and III are obtained
the same Wiener-Hopf method as above. Note that the o
difference between the modes consists of the symmetriesz
andy and the asymptotic behavior near the crack tip. In
case of mode I,WI,x andWI,y are symmetric inz, andWI,z is
antisymmetric inz. Furthermore,WI,y is antisymmetric iny.
Note in the following thaty>0. We have also added a tab
of symbols and definitions in Appendix A. The Wiener-Ho
procedure for mode I is simpler than in the case of mode
and leads to
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ŴI,x~kx ,y,kz ,s!5
W0,y

gS
22kx

22kz
2 F2 ikx

gD
~gS

21kx
21kz

2!e2gDy

12ikxgSe2gSyG , ~47!

ŴI,y~kx ,y,kz ,s!5
W0,y

gS
22kx

22kz
2 @~gS

21kx
21kz

2!e2gDy

22~kx
21kz

2!e2gSy#, ~48!

ŴI,z~kx ,y,kz ,s!5
W0,y

gS
22kx

22kz
2

3F kz

gD
~gS

21kx
21kz

2!e2gDy

22kzgSe2gSyG , ~49!

where

W0,y52
1

A2aS

gS
d

„ikx1vu~cR!…Su
. ~50!

The mode II weight function has been calculated in S
II. In summary we have

ŴII, x~kx ,y,kz ,s!5
2ikxL2

gS
22kx

22kz
2 ~e2gDy2e2gSy!

1
kzL12 ikxL2

kx
21kz

2
e2gSy, ~51!

ŴII, y~kx ,y,kz ,s!5
L2

gS~gS
22kx

22kz
2!

@~gS
21kx

21kz
2!e2gSy

22gDgSe2gDy#, ~52!

FIG. 1. The contour of integration and the position of the bran
points for reals and us/vukzuu<1, for the integration in Eq.~66!.
The two contributionsGu and Gd yield the separate factors of th
Rayleigh functionSu andSd, respectively.
.

ŴII, z~kx ,y,kz ,s!5
2kzL2

gS
22kx

22kz
2 ~e2gSy2e2gDy!

1
kzL22 ikxL1

kx
21kz

2
e2gSy, ~53!

where

L15
1

A2aSc2~0!

D

12aS
2

kz

gS
u

, ~54!

L252
1

A2aS

S c1S s

vukzu
D

c2~0!
ukzu1

c2S s

vukzu
D

c2~0!
ikx

D
3

gS
u

„ikx1vu~cR!…Su
, ~55!

c1S s

vukzu
D5

1

2 F2
D

aS~12aS
2!

„ukzu2vu~cR!…Su~ i ukzu!

„ukzu2vu~cS!…

1
aS„ukzu1vd~cS!…

„ukzu1vd~cR!…Sd~2 i ukzu!
G , ~56!

c2S s

vukzu
D5

1

2 F D

aS~12aS
2!

„ukzu2vu~cR!…Su~ i ukzu!

„ukzu2vu~cS!…

1
aS„ukzu1vd~cS!…

„ukzu1vd~cR!…Sd~2 i ukzu!
G . ~57!

The mode III weight functions have exactly the sam
symmetry iny as the mode II weight functions, but they hav
different z symmetry, that is,WI,x andWI,y are antisymmet-
ric in z andWI,z is symmetric. Furthermore, the mode III ha
a reversed asymptotic behavior near the crack tip,
WI,x ,WI,y;Ar and WI,z;1/Ar . The same symmetry iny
leads to solutions with similar structure to mode II:

ŴIII, x~kx ,y,kz ,s!5
2ikxY2

gS
22kx

22kz
2 ~e2gDy2e2gSy!

2
kzY11 ikxY2

kx
21kz

2
e2gSy, ~58!

ŴIII, y~kx ,y,kz ,s!5
Y2

gS~gS
22kx

22kz
2!

@~gS
21kx

21kz
2!e2gSy

22gDgSe2gDy#, ~59!

ŴIII, z~kx ,y,kz ,s!5
22kzY2

gS
22kx

22kz
2 ~e2gSy2e2gDy!

2
kzY21 ikxY1

kx
21kz

2
e2gSy, ~60!

h
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where

Y152
1

A2aSgS
u
S d1S s

vukzu
D

d2~0!
ukzu1

d2S s

vukzu
D

d2~0!
ikx

D ,

~61!

Y25
1

A2aSd2~0!

12aS
2

D

gS
u

„ikx1vu~cR!…Su
, ~62!

d1S s

vukzu
D52

1

2kz
F2

aS~12aS
2!

D

„ukzu2vu~cS!…

„ukzu2vu~cR!…Su~ i ukzu!

1
„ukzu1vd~cR!…Sd~2 i ukzu!

aS„ukzu1vd~cS!…
G , ~63!

d2S s

vukzu
D52

1

2kz
FaS~12aS

2!

D

„ukzu2vu~cS!…

„ukzu2vu~cR!…Su~ i ukzu!

1
„ukzu1vd~cR!…Sd~2 i ukzu!

aS„ukzu1vd~cS!…
G . ~64!
de
t

is
te
e

ha
IV. FACTORIZATION OF THE RAYLEIGH FUNCTION

We begin by discussing the conventional factorization,
discussed by Freund@1# and used by Willis and Mouvchan
@6#. Then in the light of this we present our alternative whi
proves computationally much more explicit.

Factoring out the zeros of the Rayleigh function leads

r ~kx!52DS ikx2
s

v D 2

„ikx1vu~cR!…

3„ikx1vd~cR!…Su~kx!S
d~kx!, ~65!

where vu and vd are defined in Eq.~27!. The function
Su(kx)S

d(kx), which is defined by the last equation, has
zeros in the complex plane, it is bounded and the prefa
D54aSaD—(11aS

2)2 is chosen such thatSu(kx)S
d(kx)

→1 as ukxu→`. Hence the logarithm ofSu(kx)S
d(kx) is

defined in the whole complex plane and it approaches zer
ukxu→`. We follow Freund in the decomposition o
ln„Su(kx)S

d(kx)… into two sectionally analytic functions
ln Su(kx) and lnSd(kx). By means of Cauchy’s integral, w
obtain
f the
lify
ln Su,d~kx!5
1

2p i EGu,d

lnS 2
„kz

21t21gS~t!2
…

224gS~t!gD~t!~t21kz
2!

D„i t2~s/v !…2„i t1vu~cR!…„i t1vd~cR!…
D dt

t2kx
, ~66!

which is equivalent to the form given by Willis and Mouvchan.
The contours of integrationGu andGd are shown generically in Fig. 1, and can be collapsed down to simple integrals o

integrand discontinuity along the respective branch cuts. For reals the cuts lie on the imaginary axis and the integrals simp
down to

Su~kx!5expH 2
1

pE[vu(cS),vu(cD)]
arctanS 4~kz

22t2!ugD~ i t!gS~ i t!u

„gS~ i t!21kz
22t2

…

2 D dt

t1 ikx
J , ~67!

Sd~kx!5expH 1

pE[vd(cD),vd(cS)]
arctanS 4~kz

22t2!ugD~ i t!gS~ i t!u

„gS~ i t!21kz
22t2

…

2 D dt

t1 ikx
J . ~68!
opf

ve
This approach has the computational drawback of
manding a separate integration for each set of values of
variableskx , kz , ands ~the last hidden implicitly ingS and
gD), and for complexs keeping track of the branch cuts
computationally delicate. Compounded with Fourier in
grals to transform back to real space, we found it too exp
sive to obtain real space weight functions.

Our alternative approach starts from the observation t

r ~kx!5
~s2v ikx!

4

cS
4

RS 2cS
2~kx

21kz
2!

~s2v ikx!
2 D , ~69!

where
-
he

-
n-

t

R~u!5~122u!214uA12uAcS
2

cD
2

2u. ~70!

The functionR(u) has one zero atu05cS
2/cR

2 and a branch
cut along the real interval@cS

2/cD
2 ,1#. Our strategy is to ex-

press it in factors of the form

~u2uj !
Dh j , cS

2/cD
2 <uj,1, ~71!

because such factors have a universal Wiener-H
factorization—see below.

Factoring out the zeros and its value at infinity, we ha
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R~u!52S cS
2

cD
2

21D S u2
cS

2

cR
2 D f ~u!, ~72!

where lnf(u)→0 as uuu→` and is analytic everywhere ex
cept the branch cut along the real interval@cS

2/cD
2 ,1#. We can

now apply Cauchy’s theorem to lnf(u) in the same spirit as
Eqs.~66!–~68! to obtain

f ~u!5expS 1

2p i Ebranch cut

ln f ~u8!

u82u
du8D ~73!

5expS 2
1

pE[cS
2/cD

2 ,1]
arctan

3
4u8A12u8Au82 cS

2/cD
2

~122u8!2

du8

u82u
D . ~74!
t

tu
Integrating by parts then leads to

f ~u!5expS E
0

1/2

ln
u1~h!2u

u2~h!2u
dh D , ~75!

where u1(h) and u2(h) are the smaller and larger~real!
roots of the equation

h~u!5
1

p
arctan

4uA12uAu2~cS
2/cD

2 !

~122u!2
, ~76!

as plotted in Fig. 2~for Poisson’s ration50.3).
What makes this approach particularly fruitful is that w

can decompose each termu2u1(h), and similarly u
2u2(h), as follows:
u2u1~h!5
2cS

2~kx
21kz

2!

~s2v ikx!
2

2u1~h!5
2cS

2

~s2v ikx!
2 S kx

21kz
21

1

„cS /Au1~h!…2
~s2v ikx!

2D
5

cS
2

~s2v ikx!
2
aS cS

Au1~h!
D 2S kx2 ivdS cS

Au1~h!
D D S ivuS cS

Au1~h!
D 2kxD , ~77!
rds

t
s
nd
wherea(c)5A12(v2/c2), and

vu~c,s!51/a~c!2
„sv/c22Aa~c!2kz

21s2/c2
…, ~78!

and the opposite sign of square root forvd(c,s) @also see Eq.
~28!#.

We now show that the rootsivu(c,s) and ivd(c,s) are
trivially assigned correctly in Eq.~78!, in the sense tha
ivu(c,s) remains in the lower complex plane andivd(c,s)
in the upper half plane for all complexs. We also rely on
v,cS,cS /Au1(h j )5c. Here it is important that we take
the standard convention that the square root function re
 rn

non-negative real part, which leads to branch cuts outwa
along the imaginary axis from6 i ukza(c)cu for vu(c,s) and
vd(c,s) in the complex plane.

For all reals the assignment ofvu(c,s) and vd(c,s) is
correct by inspection. Next we note that Re(vu,d) could only
change sign on the imaginary axis ofs, because for
Re(vu,d)50, expression~77! would have a pure real roo
which is only possible for Re(s)50. Hence the assignment
extend correctly from the real axis to each of the right a
left half planes ofs.

With Eqs.~72! and~73! the original functionr (kx) in Eq.
~69! can then be written
r ~kx!52S 1

cS
2

2
1

cD
2 D ~s2v ikx!

2aR
2@kx2 ivu~cR!#@kx2 ivd~cR!#

3expF E0

1/2

ln

a2S cS

Au1~h!
D S ivuS cS

Au1~h!
D 2kxD S kx2 ivdS cS

Au1~h!
D D

a2S cS

Au2~h!
D S ivuS cS

Au2~h!
D 2kxD S kx2 ivdS cS

Au2~h!
D D dhG . ~79!
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Using the above result thativu(c,s) remains in the lower
half-plane andivd(c,s) in the upper half plane~for all com-
plex s andv<cS), respectively, and by comparison with E
~65!, we can decomposer (kx) into a product of upwards an
downwards analytic factors

Su~kx!5expF E0

1/2

ln

ivuS cS

Au1~h!
D 2kx

ivuS cS

Au2~h!
D 2kx

dhG , ~80!

Sd~kx!5expF E0

1/2

ln

ivdS cS

Au1~h!
D 2kx

ivdS cS

Au2~h!
D 2kx

dhG , ~81!

whereh(u) is given Eq.~76! andvu(c), vd(c) were pre-
viously defined in Eq.~78!. In the last equations we hav
also used the fact thatSu(kx),S

d(kx)→1 askx→`.
de
,

al
Simple numerical quadrature schemes applied to the i
grals in Eqs.~80! and ~81! yield the desired factorization o
the form

Su~kx!5)
j 51

N S kx2 ivuS cS

Au1~h j !
D

kx2 ivuS cS

Au2~h j !
D D

Dh j

,

Sd~kx!5)
j 51

N S kx2 ivdS cS

Au1~h j !
D

kx2 ivdS cS

Au2~h j !
D D

Dh j

. ~82!

We found Simpson’s rule highly effective; using ten poin
for the casen50.3 we obtain the exponentsDh j and the
zerosu1(h j ) andu2(h j ) from
f ~u!5)
j 51

N S u1~h j !2u

u2~h j !2uD Dh j

5S u20.499624

u20.500319D
1/60S u20.379559

u20.697455D
1/15S u20.348595

u20.789035D
1/30

,

S u20.329914

u20.854025D
1/15S u20.31682

u20.901582D
1/30S u20.306973

u20.936423D
1/15S u20.299344

u20.961645D
1/30

, ~83!

S u20.293476

u20.979393D
1/15S u20.289219

u20.991136D
1/30S u20.286602

u20.997827D
1/15S u20.285714

u21 D 1/60

.

he
ch
the

f
ng

a

It is important to note that this numerical quadrature in or
to obtainDh j , u1(h j ), andu2(h j ), needs to be done once
and most importantly, independently ofkx , kz , ands, for a
given choice ofcS

2/cD
2 ~which is a function of Poisson’s ratio

only!. We have also tested the factorsSu(kx) andSd(kx) in
Eq. ~82! against their more conventional form in Eqs.~67!
and~68! for reals. We have found that the relative numeric
discrepancy is less than 0.0002 for allkx along the real axis.

FIG. 2. The functionh(u) whose inversesu1(h) andu2(h) are
used in Eq.~75!, plotted for Poisson’s ratio isn50.3. u1(h) are to
the left,u2(h) to the right.
rV. NEAR CRACK TIP EXPANSION OF THE DYNAMICAL
MODE II WEIGHT FUNCTION

At this point we anticipate the general structure of t
stability analysis without elaborating on the details whi
shall be given in a future paper. As mentioned in Sec. I,
progress of a small perturbationh(x,z) of the crack surface
is determined by the criterionK II@h(x,z)#50. The total
mode II stress intensity factorK II is decomposed as a sum o
loading contributions from near the crack tip and loadi
contributions from the crack surface. Hence we require

FIG. 3. The contour of integration.
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knowledge of the weight function near the crack tip and
the crack surface. In this section we will expand the mod
weight function up tor 5AX21y2, wherer is the distance
from the crack tip in the comoving frame. As we only ha
the weight function in Fourier coordinates~with respect to
kx) we first need to relate the near crack tip expansion in
space to the corresponding terms in Fourier space. To l
ing order inkx the Fourier back transforms are of the for
~notey>0)

W~X,y!5
1

2pE2`

`

dkxe
ikxXe2anukxuy1 i (sv/cn

2an)sgn(kx)yŴ~kx!,

~84!
n
II

al
d-

which can be regarded as two Laplace transforms iny. If
Ŵ(kx)→abkx

b askx→1`; then

W~X,y!5
1

2p
abG~11b!2 ReS e2anukxuy1 i (sv/cn

2an)sgn(kx)y

~2 iX1any!11b D ,

~85!

whereG(x) denotes the gamma function. In our analysis it
useful to note thatG(11x)5xG(x) and G(23/2)5 4

3 Ap.
Application of Eq. ~85! to the Fourier transformed weigh
functions in Eqs.~42! and ~43! and some straightforward
algebra yields the asymptotic expansion of the real sp
mode II weight function near the crack tip:
WII, x~X,y,kz ,s!5
22

12aS
2

c2S s

vukzu
D

c2~0!

1

A2p
ImS 11 i

sv

cD
2 aD

y

AX1 iaDy
2

11 i
sv

cS
2aS

y

AX1 iaSy
D 2

4

12aS
2
F c1S s

vukzu
D

c2~0!
ukzu

1

c2S s

vukzu
D

c2~0! S vu~cS!

2
1a0ukzu2vu~cR!1aS

2 vu~cS!1vd~cS!

12aS
2 D G 1

A2p
Im~AX1 iaDy

2AX1 iaSy!2

c2S s

vukzu
D

c2~0!

1

A2p
ImS 11 i

sv

cS
2aS

y

AX1 iaSy
D

22F c1S s

vukzu
D

c2~0!
ukzu1

c2S s

vukzu
D

c2~0! S vu~cS!

2
1a0ukzu2vu~cR! D G ImAX1 iaSy

A2p
, ~86!

WII, y~X,y,kz ,s!5
11aS

2

aS~12aS
2!

c2S s

vukzu
D

c2~0!

1

A2p
ReS 11 i

sv

cS
2aS

y

AX1 iaSy
D 2

2aD

12aS
2

c2S s

vukzu
D

c2~0!

1

A2p
ReS 11 i

sv

cD
2 aD

y

AX1 iaDy
D

1
2

aS~12aS
2!
F ~11aS

2!

c1S s

vukzu
D

c2~0!
ukzu1~11aS

2!

c2S s

vukzu
D

c2~0! S vu~cS!

2
1a0ukzu2vu~cR! D

1S aS
21

~11aS
2!~3aS

221!

2~12aS
2!

D c2S s

vukzu
D

c2~0!
„vu~cS!1vd~cS!…GReAX1 iaSy

A2p
2

4aD

12aS
2
F c1S s

vukzu
D

c2~0!
ukzu

1

c2S s

vukzu
D

c2~0! S vu~cS!

2
1a0ukzu2vu~cR! D1S 3aS

221

2~12aS
2!
D c2S s

vukzu
D

c2~0!
„vu~cS!1vd~cS!…

1
1

2

c2S s

vukzu
D

c2~0!
„vu~cS!1vd~cS!1vu~cD!1vd~cD!…GReAX1 iaDy

A2p
1p0 , ~87!
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WII, z~X,y,kz ,s!5
24kz

12aS
2

c2S s

vukzu
D

c2~0!

1

A2p
ImS S 11 i

sv

cS
2aS

yDAX1 iaSy2S 11 i
sv

cD
2 aD

yDAX1 iaDyD
2

8

3

kz

12aS
2
F c1S s

vukzu
D

c2~0!
ukzu1

c2S s

vukzu
D

c2~0! S vu~cS!

2
1a0ukzu2vu~cR!1

aS
2

12aS
2
„vu~cS!1vd~cS!…D G

3
1

A2p
Im„~X1 iaSy!3/22~X1 iaDy!3/2

…12kzS c2S s

vukzu
D

c2~0!
2

D

aS~12aS
2!c2~0!

D
3

1

A2p
ImS S 11 i

sv

cS
2aS

yDAX1 iaSyD 1
4

3
kzF c1S s

vukzu
D

c2~0!
ukzu1

c2S s

vukzu
D

c2~0! S vu~cS!

2
1a0ukzu2vu~cR! D

1
D

2aS~12aS
2!c2~0!

vu~cS!G 1

A2p
Im~X1 iaSy!3/2 ~88!

as r 5AX21y2→0. The constanta0 originates in the asymptotic expansion ofSu(kx) in Eqs. ~67! or ~82!, i.e., Su(kx)51
1 ia0(ukzu/kx), with

a05
1

ukzu
(
j 51

N

Dh j S vuS cS

Au2~h j !
D 2vuS cS

Au1~h j !
D D . ~89!

The coefficientsc1(s/vukzu) and c2(s/vukzu) are defined in Eqs.~40! and ~41!. We have also used the relationship~46! to
eliminatec0. The constantp0 in the asymptotic expansion ofWII, y(X,y,kz) is given by@see Eq.~90!, Sec. VI# p05WII, y(X
502,y50,s).

VI. WII, Y IN REAL SPACE ON THE CRACK SURFACE

For our final evaluation ofK II we shall also need the full real space expression ofWII, y on the crack surface. Note that th
Fourier back transformation ofŴII, y with respect tokx can be turned into a contour integral in the lower complex half pla
see the dashed line in Fig. 3. In Fourier space the functionŴII, y relates toL2

u @also see Eq.~43!#, and, hence, it has a pole an
branch cuts in the lower half plane. As the simple pole atkx5 ivu(cR) does not lie between the semi-infinite branch cuts
can move these branch cuts to a single finite branch cut along the line betweenivu(cD) and ivu(cS); see Fig. 3. Then the
Fourier back transform collapses to an integral along the finite branch cut betweenivu(cD) and ivu(cS) and a circle around
the pole atkx5 ivu(cR) ~see the solid lines in Fig. 3!, yielding

WII, y~X,y50,kz ,s!52
1

A2aS

S c1S s

vukzu
D

c2~0!
ukzu2

c2S s

vukzu
D

c2~0!
vu~cR!D gS

2
„ivu~cR!…2vu~cR!21kz

2

2„kz
22vu~cR!2

…gS
d
„ivu~cR!…Su

„ivu~cR!…
e2vu(cR)X

2
2D

pA2aS~12aS
2!

sgn @Re„ivu~cS!2 ivu~cD!…#„ivu~cS!2 ivu~cD!…e2vu(cD)X

3E
0

1

dt e2tX„vu(cS)2vu(cD)…H S c1S s

vukzu
D

c2~0!
ukzu1 ikx

c2S s

vukzu
D

c2~0!
D
„ikx1vd~cR!…

3
„gS~kx!

42~kx
21kz

2!2
…Sd~kx!gS

u~kx!gD~kx!

„gS~kx!
21kx

21kz
2
…

4216gS~kx!
2gD~kx!

2~kx
21kz

2!2
J

at kx5 ivu(cD)1t„ivu(cS)2 ivu(cD)…

~90!



ic

r
s

io

-

t
en
n
of
a
lic
io

ith
ich
tio,

te-
to
y is
ti-

of
in
in
nu-
p-
is
of

ou-
g
in
of

er.

PRE 61 309DYNAMICAL WEIGHT FUNCTIONS FOR A PLANAR CRACK
for X<0. Note also that we have replacedSu by an expres-
sion of the formSu;r (kx)/S

d @see Eq.~29!# in the integral
of the above equation. This has been done for numer
reasons since by constructionSd is better approximated
along the upper branch cut thanSu. For reals we need to
take the limit s1 i01 or s1 i02 so as the prefacto
sign@Re„ivu(cS)2 ivu(cD)…# provides the right sign and i
not exactly zero. We observe that they component of the
mode II function on the crack surface has a Taylor expans
in x of the form WII, y(X,y50,s)5p01p1X1••• near the
crack tip ~for x<0). Furthermore,WII, y decays exponen
tially with x as e2vu(cD)uxu. We know from Sec. V that in
forward direction (X.0) WII, y has an expansion inAX of
the form WII, y(X,y50,s)5•••1/AX1p01•••AX near the
crack tip.

VII. CONCLUSION

It is very unlikely that a closed form exists, withou
quadrature or approximation, for the full time space dep
dent weight functions for a moving crack in three dime
sions. The key difficulty is the Wiener-Hopf factorization
the Rayleigh function, and here we have contributed an
proach to the quadrature required. This leads to exp
forms for approximants to the weight functions, as a funct
al

n

-
-

p-
it
n

of height above the crack plane and Fourier transformed w
respect to the other coordinates. The only quantity wh
enters our approximants nonparametrically is Poisson’s ra
but it is otherwise universal to isotropic linear elastic ma
rials. It is likely that the same methodology would apply
anisotropic materials, at least when the fracture geometr
aligned to principal material axis, but we have not inves
gated this.

We applied our methods to extracting specific details
the mode II weight function in real space coordinates,
order to service our calculations of mode I crack stability
the following paper. Full real space dependence requires
merical Fourier integrals, and it is vital here that our a
proach give explicit functions of the Fourier variables. Th
spares us the full computational cost of one multiplicity
quadrature.

Other possible applications of our results include the c
pling of cracks with sound, and the deflection of movin
cracks by inhomogeneity. However, to carry these forward
full rests on the coupling of stress intensity to perturbation
crack geometry, which is the subject of our following pap
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APPENDIX A: NOTATION AND DEFINITIONS

E5FS ]

]t
2v

]

]XD2

2“•C:“G Elasticity operator in comoving frame

B5n•C:“ Boundary operator

s @w#5C:“w Stress tensor generated by the vector fieldw

C Tensor of linear homogeneous, isotropic elastic
with componentsCi jkl 5ld i j dkl1m(d ikd j l 1d i l d jk).

cS Shear wave speed
cD Dilatational wave speed
cR Rayleigh wave speed

an5A12~v2/cn
2!, n5S,D,R,

D54aSaD2~11aS
2!2,

vuS cn ,
s

vukzu
D 5

ukzu
an

2 F s

vukzu
~12an

2!2Aan
21S s

vukzu
D 2

~12an
2!G , n5S,D,R,

vdS cn ,
s

vukzu
D5

ukzu

an
2 F s

vukzu
~12an

2!1Aan
21S s

vukzu
D 2

~12an
2!G , n5S,D,R,

gnS kx ,
s

vukzu
D 2

5kx
21kz

21~12an
2!S s

vukzu
UkzU2 ikxD 2

, n5S,D,R,

gn
uS kx ,

s

vukzu
D5Aani S ivuS cn ,

s

vukzu
D2kxD , n5S,D,R,

gn
dS kx ,

s

vukzu
D5Aani S kx2 ivdS cn ,

s
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D D , n5S,D,R,
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c1S s

vukzu
D5

1

2F 2D

aS~12aS
2!

Xukzu2vuS cR ,
s

vukzu
D CSuS i ukzu,

s

vukzu
D

S ukzu2vuS cS ,
s

vukzu
D D 1

aSXukzu1vdS cS ,
s

vukzu
D C

Xukzu1vdS cR ,
s

vukzu
D CSdS 2 i ukzu,

s

v ukzu
D G

c2S s

vukzu
D5

1

2F D

aS~12aS
2!

Xukzu2vuS cR ,
s

vukzu
D CSuXi ukzu,

s

vukzu
C

Xukzu2vuS cS ,
s

vukzu
D C 1

aSXukzu1vdS cS ,
s

vukzu
D C

Xukzu1vdS cR ,
s

vukzu
D CSdS 2 i ukzu,

s

vukzu
D G .

Su andSd are given analytically in Eqs.~80! and ~81!, and numerically in Eqs.~82! and ~83!.

APPENDIX B: DYNAMICAL MODE II DISPLACEMENT FOR A PLANAR CRACK AND ITS FOURIER TRANSFORM

There are two different approaches to the Fourier transformed mode II displacement for a moving planar crack.
shall Fourier transform the real space dynamical displacements; however, alternatively, we could have determined th
transformed displacements directly by the Wiener-Hopf technique as outlined in Sec. II. The calculation of the real spa
I displacement is clearly presented in Freund’s book@1#.

First, the mode II displacement in the comoving frame is expressed in terms of the two Lame´ potentialsF andC3, which
obey the two-dimensional version of the wave equations~8! and ~9!. Hence both are expressible in terms of two analy
functionsG(z) and F(z). We note that the symmetry of the type II loading yieldsF(x,y)5Im F(x1 iaDy) and C3(x,y)
5ReF(x1 iaSy). Then the boundary conditions on the crack face, which in terms ofF andG are different from the type I
case, give

F~z!5
K II

A2pm

8aS

3D
z3/2, G~z!5

K II

A2pm

4~11aS
2!

3D
z3/2. ~B1!

We deduce the displacements for mode II:

uII, x5
2K II

A2pmD
Im @2aSAx1 iaDy2aS~11aS

2!Ax1 iaSy#, ~B2!

uII, y5
2K II

A2pmD
Re @2aSaDAx1 iaDy2~11aS

2!Ax1 iaSy#. ~B3!

In order to Fourier transform these displacement fields we first note that, fory.0,

E
2`

`
Ax1 iye2 ikxxdx52

11 i

2

A2pukxu

kx
2

e2ukxuy 11sgn~kx!

2
. ~B4!

As we can express all Fourier integrals in terms of this integral, we finally obtain the Fourier transformed mode II di
ment for a planar dynamical crack (y>0):

ûII, x~kx ,y!5
K II

A2mD
@22aSe2ukxuaDy1aS~11aS

2!e2ukxuaSy#
A2 ikx

kx
2

, ~B5!

ûII, y~kx ,y!5
K II

A2mD
@22aSaDe2ukxuaDy1~11aS

2!e2ukxuaSy#
Aikx

kx
2

. ~B6!

The corresponding fields in the lower half space,y<0, are given by the symmetry of the loading mode.

APPENDIX C: FOURIER TRANSFORMED 2D DYNAMICAL MODE II WEIGHT FUNCTION

We argued earlier in this paper that the weight functions can be determined on the grounds that they obey the hom
equations of elasticity and the boundary conditions on the crack face, and we have knowledge of their leading order di
near the crack tip. Following this reasoning, we can deduce that the 2D weight functionW2D,II is given by



de
from
. In real
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W2D,II;
]

]x
uII , ~C1!

whereuII is the mode II displacement field for a planar crack. We note that (]/]x)uII satisfies all the requirements on the mo
II weight function. In particular, it has the right 1/Ar divergence near the crack tip. The constant prefactor is determined
the condition that the weight function integral of a mode II stress field has to return the mode II stress intensity factor
space fory>0, we then have

W2D,II,x52
1

A2p

1

aS~12aS
2!

Im F2aS

1

Azd

2aS~11aS
2!

1

Azs
G , ~C2!

W2D,II,y52
1

A2p

1

aS~12aS
2!

Re F2aSaD

1

Azd

2~11aS
2!

1

Azs
G , ~C3!

wherezd5x1 iaDy andzs5x1 iaSy. The original formulas for the mode II displacement fielduII ~whose derivative is taken
in the above! are given in Appendix B. In Fourier space we have (y>0)

Ŵ2D, II,x~kx ,y!5
i

A2aS~12aS
2!

@2aSe2ukxuaDy2aS~11aS
2!e2ukxuaSy#

A2 ikx

kx
, ~C4!

Ŵ2D,II,y~kx ,y!5
i

A2aS~12aS
2!

@2aSaDe2ukxuaDy2~11aS
2!e2ukxuaSy#

Aikx

kx
. ~C5!
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