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Dynamical weight functions for a planar crack
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The stress intensity factors are evaluated for a moving planar crack for loadings which vary arbitrarily in
time and three dimensions of space. We exploit the adjoint elasticity equation obeyed by the corresponding
weight functions, and a new and more universal Wiener-Hopf factorization of the Rayleigh function, this being
the central difficulty in such calculations. For the mode Il weight function we give further asymptotic results
crucial to a subsequent calculation of crack stability with respect to out-of-plane perturbations.

PACS numbes): 46.50+a, 62.20.MK, 05.45-a, 83.50--v

[. INTRODUCTION at some particular time and position along the edge of the
crack, in response to a point impulpeapplied to the mate-
The first part of our work revolves around the calculationrial at x,y,z,t. The direct approach to computiy would
and properties of the dynamical weight functions. Weightbe to to compute the full displacement field resulting from
functions are Green functions which by definition return thethe impulse, and then to extract the stress intensity factors as
stress intensity factors at a poifitalong the crack tip and the coefficients of its leading behavior around the crack tip.
time T for a given volume forceé and boundary tractiog This coulq all l_:)e QOng via the full elastic Green fgncthn of
[1], e.g., for mode | - —  the material(with its time dependent boundarywhich di-
T ' rectly gives the displacements resulting from arbitrary
forces; extracting the stress intensity factors then amounts to
K|(T,Z)=f dtf A3 W,(T,Z,t,x) - f(t,X) taking a projection from the Green function.
Q — - - = It follows that the weight functions inherit from the Green
function the property that they obey the equations of elastic-

+f dtf dSW,(T. Z,t.X(S))- g (t,X(S)) ity (strictly their adjoint, but they are self-adjojnt
(?Q ! 1 L 1_ 9 1_ L
&2

where () and Q) are the domain and the boundary of the gng
cracking material, and analogously for modes Il and lIl.
We will take our crack to propagate in tiedirection in n-C:VW=0 on 4Q, 2

thex,z plane, with the crack edge along thelirection and whereC is the elasticity tensor and the boundary surface

the 'nor.mal tc.) the fracture plane in thedlrec.Uon.'Then ormal. Discussion of inhomogeneous terms at the crack tip,
qualitatively, in terms of stress components diverging ahea%herited from the Green function equation, is obviated by

of the crack,K; corresponds to normal stress@tably  yequiring the weight functions to match the near crack
oyy), Ky to shearing in thex direction (oy,) and Ky to  asymptotic form of simple known cases.
shearing in the direction (o). The approach outlined above is not dependent on any par-

Type | crack propagation, driven B¢, is the most natu- ticular crack shape or motiofprovided it is specifieg nor
ral case to consider as its stress field has the full symmetry ghaterial inhomogeneity or isotropy. Historically it was first
the planar crack geometry. The pure type Il stress field igommunicated in the context of quasi-static cracks by
antisymmetric with respect to thedirection (out of plane, Bueckner{3] in 1970 and by Ric¢4] in 1972 as a corollary
and henceK,, plays a central role in the discussion of the of Betti's theoren{1]. It was actually used by Bueckngs]
stability of type | cracks with respect to out-of-plane pertur-to calculate the quasistatice., negligible velocity weight
bation. For this reason the full type Il weight function is a functions and by FreunfdL] to calculate the two-dimensional
crucial input to the crack stability calculations of our follow- weight functions for time-dependent loadings. The general
ing paper[2], and we discuss it here in greatest detail. Wespace and time dependent case for a moving crack was dis-
include an evaluation of type | and Il weight functions in the cussed explicitly by Willis and Mouvchaf6,7], but in a
present paper for completeness. In our following paper weepresentation where the equations of elasticity appear non-
consider the self-consistent evolution of a perturbed crackelf-adjoint. Strictly speaking it is the adjoint of the elasticity
through the surfacg=h(x,z), to first order inh(x,z); for  equations which appears in E@®); see also Ref[8]. As a
stability, elementary self-consistent solutions must decreasesult the simple general form of Bueckner’s results remain
asx increases. under appreciated.

The most general definition of a weight functidnis that For a planar crack the conditions across the fracture plane
W(x,y,z,t)-p returns some particular stress intensity factorpresent a natural problem for the application of Wiener-Hopf
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techniques, with boundary conditions applying over the frachave terms with mixed upwards and downwards analyticity.
tured half of the plane and continuity conditions applyingThe key to unraveling the Wiener-Hopf equations into a
across the unfractured half. We refer the reader to Freund’downward analytic function on one side of the equation and
[1] book for a good introduction to the Wiener-Hopf tech- an upward analytic function on the other is to factorize the
nique in this context. Rayleigh function. We can then use the identity theorem to
Willis and Mouvchan already published a calculation of continue each side analytically in the whole complex plane.
the dynamical surface weight functiorisorresponding to In the fourth and last step, we apply Liouville’s theorem to
loadings on the crack surface ohblong these lines, leading arrive at the final expressions for the Fourier transformed
to results in terms of one coordinate dependent quadraturéame potentials. We then substitute the Lametentials to
Our work differs in using a new and more explicit factoriza- obtain the components of the mode Il weight function.
tion of the Rayleigh function, which is universal up to de- In our first step we express the weight functidfy and
pendence on Poisson’s ratio. This leads to significantly moréhe generated stress fiele=C: VW, in terms of the Lame
explicit results for all three weight functions, which in the potentials® and ¥ (see also Freund’s bodi]),
case of mode Il are crucial for crack stability calculations in

our following paper. We also go beyond Willis and Mou- W 0P d¥3 9V,

vchan in considering loadings applied to points inside the WXTx oy gz

material, rather than just on the fracture surface. Our main

results are given explicitly iry, but Fourier-Laplace trans- ob IV, 9V, b I, ¥,
formed with respect tx, z, andt. In the type Il case we Y=y " oz ax Iz~ 57 T oy ay

elaborate further detail at the crack surface, and also in terms &)
of x andy near the crack tip.
In the context of weight functions we find it useful to where the vector field? must satisfy the additional gauge
distinguish between the quasistatic case, that is zero craonditionV-v=0:
velocity, and the dynamical weight functions for general ve- -

locity. In either case, we distinguish further betweépthe Oy PD PV, PV, PP, PV,
two-dimensional weight functiofa function ofx,y), corre- —=2 t—- —— t , (4
sponding to loadings uniformly distributed over the third di- # My oy NIz ox oz
mensionz if any, or k,=0 in Fourier termsj2) the surface 5

weight function(a function ofx,z), corresponding to load- Oyy _ C—DV2<I>— 2072‘13 _20"2(1) . 23211’1 _ Vg 5
ings on the crack faces in three dimensions; é)dhe gen- w2 922 ox2  aydz  Taxay’ ®
eral three-dimensional weight function for loadings arbi- s

trarily located i :

rarily located inx, y, andz oy PD PV, ) 20, ) PV, PV, ©

= + + .
Mm ayoz 572 axXoz — gy?  IXdy
II. MODE Il WEIGHT FUNCTION FOR A MOVING

CRACK AND TIME-DEPENDENT LOADINGS The remaining stress components are not listed here as they
do not enter the boundary conditiofthey can be found in

Our calculation of the weight functions is based on theF d's b 1. As all the derivat b ¢
fact that the dynamical weight function for a moving planar reund's 00K 1]). As all the derivatives above are at con-
Stant timet we are at liberty to replace by the variablex

crack is determined by the homogeneous equations of elas- i th ing f
ticity and the leading order divergence near the crack tip. We XVt In the comoving frame. .
In what follows we work in the comoving frame of refer-

hereby avoid loading contributions in the Wiener Hopf equa- d all field Fouri f d with
tions. The discussion of the weight function properties in thet¢€ and all fields are Fourier transtormed with respect to

quasistatic casé8] translates similarly to the dynamical Lhelr zr(]:oorﬁlnzfi_te. AS dfrom ths symmetry of r];n(?]de I éve |
crack. Hence we are looking for a solution of the homoge- now that the first and second components of the mode
eight function are symmetric im whereas the third com-

neous equations of elasticity which generates zero Ioading‘g . . . . .
on the crack face and which diverges agrlhear the crack ponent is antlsymmgtrlc. Applylng this symmetry to thg
tip. The remaining undetermined constant can be found bgependence, for a single Fourier component we can write

comparison with the known two-dimensional weight func- d(X H=d(X V.t K
tion. Here we present details for the mode |l case. The ad- (Xy.zh=eXy.heodk.2),
aptation to modes | and Il is straightforward, and we collect V(X =T (X v t)sin(k
results for all three cases in Sec. Ill below. 1Y,z =T Xy sintkzz), -
Our strategy to obtain the dynamical weight function in W,(X,y,2,8) =W ,(X,y,t)sin(k,2) @)
Fourier space consists of four steps. First, we express the 2T 2P =
weight function in terms of the Lampotentials for which Wo(X,y,2,t) =W4(X,y,t)cogk,2)
1 Y& 1) z "

the equations of elasticity translate into two sets of wave

equations and the corresponding boundary conditions. Seg, the comoving frame, the potentials obey the wave equa-
ond, we establish the correspondence between semi-infinifg)ng

support in real space anidpwards or downwardsanalytic-

ity in Fourier space. Third, we use the boundary conditions 1/ 4 9 \2 P 52
to arrive at two(decoupled sets of Wiener-Hopf equations —Z(E—VR) Tt § =0, (8
for the Lamepotentials. In each Wiener-Hopf equation we Cb axs ay



300 A. A. AL-FALOU, R. C. BALL, AND H. LARRALDE PRE 61
1/ 9 g \2 92 92 ) for Im(k,)> — a, and the Fourier transform of* is analytic
S|=-v—=<| | —+—-ki| | =0, 9 i i i
2\ at vax) e )| (9) in the lower complex plane as Ik() <. This motivates

the notation\?V“(kX) for the Fourier transform oV~ and

wherecp andcg are the dilation and shear wave speeds andrd(k,) for the Fourier transform of*, respectively.

the vector field? has been taken to satisfy the gauge con- The solutions of the transformed wave equati@sand

diton V-¥=0. (9), which are bounded in the upper half plapes0, are
In our second step, we consider symmetries with respediven by

to y and establish the analyticity properties of the weight _ N . R

function and the generated stress fields in Fourier space. The(k,,y,s)=®(k,,s)e” 0¥, ¥(k,,y,s)=V¥(k,,s)e” ¥,

first and third components &, are antisymmetric iry [in

the sensd(—y)= —f(y)], whereas the second component is
symmetric. On the upper crack surface and its continuatio

ahead of the cracky=0") we have

0, X>0
W= W (X,t)cogk,z), X<O
and
0, X>0
Wi,2= W, (X,t)sin(k,z), X<O0. (10

The minus(or plug sign in the upper index indicates that the

function is nonzero for negativer positive X only. Clearly,
it suffices to work in the upper half spacg=*0) since the

corresponding fields in the lower half space can be obtaineg0

by symmetry. These symmetries with respectytand the
zero loadings on the crack fac&€0) yield the following
boundary conditions on the upper surface0™:

oy(X,t)cogk,z), X>0
Oxy= oyy=0,
0, X<O0,
oy (X, )sin(k,z), X>0

11

o]
The plus index indicates that,, is zero forX<0 andy
=0, for example. We now apply @&wo-sided Laplace
transform in time and a Fourier transform Xnto the fields

¢, ¥, W, andg. Our convention for the two-side Laplace
transform and the Fourier transform ¥is given by

0, X<0.

c+iow

1 (= oA
ds étﬁf dke* XD (s,y,k,)
(12)

<I>(X,y,t)=f

c—i
and

~ 0 ) .
(s,y.ky) = f dte*stf dX e kKD (Xy 1), (13

Note that we have used the causality of the weight function

(14)
there
2 2 2 1 H 2
vo=k;+ks+ —2(s—wkx) ,
Cb
2 2 2 1 H 2
Ys=Kit K+ — (s—viky)“. (15
Cs
We also use the definition
V2
an= 1-—, n=SD,R. (16)

n

In the third step, we turn our attention to the boundary
nditions which vyield the final Wiener-Hopf equations.
First we set the solutions in Eq&l4) into the transformed
equations(4)—(6). Then we rewrite the boundary equations
in terms of the newly defined potentials

pl pt 5 5
x1=k,—> +ik—=,
M M

. - . . (17)
A=k Wy HiKG W 2, A=Wy kW 5.
The reason for introducing the new potentials is to decouple
the final Wiener-Hopf equations later in the calculation. The
boundary y=07") values ofy andA are given in terms of
those of® andV¥':

Xi= Ak Va—ik W)+ (K+ kD) ys¥,,  (18)
X3=2(K2+K2) yp @+ (yE+ K2+ K2) (i W 3— kW),

(19

A== (K2+K)W,— ok Pa—ik,by), (20

A== (Z+K)D— ye(ikTs—k V), (2D

and the boundary conditions are implied by the upwatds
or downwardgd) analyticity of y;, x2, A1, andA,, respec-

S

in the last equation, i.e., only past loadings contribute to thdively- Additionally, we haveo,,=0 and the gauge condi-
stress intensity factor. Hence the upper limit of the integral idion 0=V - ¥, i.e.,

0 instead ofe.

By comparison with the quasistatic weight functifsi
we anticipate that théwith respect taz Fourier transformed
weight function, and hence the stress field are exponen-
tially bounded inX, say bye*”‘m. This means that the Fou-
rier transform ofW™ is analytic in the upper complex plane

0=(12+K2+K)D +2yg(ik W3~k Fy), (22

0:_|kx\ifl+ '}’S{I\rz"‘kzq’\’:; (23)

Elimination of & andi from Eqgs.(18)—(293) yields
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chz—)’s/\u, (24) downward analytic. Obtaining explicit expressions or ap-
proximations ofSU(k,) and S%(k,) is the major computa-
r(k,) tional challenge, which we discuss in Sec. IV below.
Xg:— ﬁ/\g, (25) We can now decompose the Wiener-Hopf equations in
ys(¥s—kz—k)) Eqgs.(24) and(25) into upward and downward analytic func-
tions with a joint strip of analyticity:
where
(k) =(k;+ki+ 78— dysyp(ki+KD).  (26) L m 30
Equations(24) and (25) are crucial because they encode the s
weight function as a pair of Wiener-Hopf problertsee be-
low). Given solutions forA ; and A ,, we can then substitute Y2 . D (ike+ w¥(cr))S"
back to obtain the Fourier transformed components of the; g X2= > " A, (31
weight function. (ikg+ w%(cr))S" 1-asg ¥s

The spirit of the Wiener-Hopf calculation rests on the
splitting of the factorsys in Eq. (24) andr (k,)/ys(y3—kZ  According to the identity theorem in complex analysis, each
—k)z() in Eq. (25) into a product of a downwards and an side in Eq.(30) is analytic in the whole complex plane.
upwards analytic function. The Wiener-Hopf factorization of ~We have now arrived at the fourth and last step of the

Eq. (24) is Wiener-Hopf calculation, that is, the identification &f and
A, on the grounds of Liouville’'s theorem and boundedness
ys=vyayi=ag (0"(cs) —k)Vas (k—iw(cg)), arguments. As in the quasistatic cd$3 we know by di-

(27 mensional arguments that the most divergent term of the
three-dimensional weight function in real space diverges like
1/yr, and it is identical to the two-dimensional weight func-
tion. As the two-dimensional weight function has a zero

w”(cn)Zw”<Cn,i) component, we conclude that/, ,~\r as r=Jx?+y?

vk —0. The other components in real space diverge We,

where

) 5 ~1Kr, W, ,~1/4r, and hence,o,~1\r and oy,
k| s v 2 [_S |V ~11JF as r—0. Therefore, A;~k,/ Kk, An~ 1k,
:_2 _2_ an+ R _2 , r as r—0. ererore, A4 z X1 . 2 . x,. X1
a? | VIk ¢2 viky | c2 ~K,\Ky, and yo~Kkyky as|k,—o. Applying Liouville's
(28)  theorem to the analytic functions in EGO), we have
e=ofer ] .
z
_dxclj:COkz:_ygAg’ (32
k.| s V2+ 2, [ S 2y2 ¥s
= — — a — — s
aﬁ V|kz| Cﬁ " V|kz| Cﬁ g
Vs .
wheren=S,D,R, andiw'(c,) andiw(c,) are the branch mxg=cocl|kz|+coczlkx
points of y! and y4, respectively. Note thatw'(c,) lies in (iket %(Cr))
the lower half-plane but corr_esponds to the branch analytic in D (ik +w'(cg)S
the upper half-plane, and vice versa, far(c,). Note that = 5 " 5,
we chose the branch cut of the complex square root to be on 1-ag Vs
the negative real axis. With this definition the first square (33

root in Eq.(27) is upward analytic, whereas the second is
downward analytic. . Lo

A key difficulty in our evaluation consists of factorizing where we havg defmgd the Llouvn.l(.a constants such ¢pat
the second Wiener-Hopf equation in E@5), that is, the ¢4, andc, are plme_nsmnless qqantltles. The constantand .
factorization of the Rayleigh function(k,) into downward €2 &€ determined in the following, whereas we are left with
and upward sectionally analytic functions. Following Freung@n overall constant, as we work with the homogeneous
[1] the factorization takes the form equations of elasticity. Combining Eg82), (32), and(17)

we obtainW,, , andW,, , ony=0":

s 2
r(ky)=—D|ik,— —) (iky+ w"(cr)) R .
v WII,X(kX!O !kz) _ 1
X (it 0%(Cr))S (k) SU(Ky), (29 Co K+ Kz
wherew andw? are defined in Eq27); this renders explicit K2 1—ad iky(Cqlky|+ Coiky) va
all the zeros ofr(k,) and the constanD=4asap—(1 X|——~ D ) " -
+a)? is chosen such tha®'(k,)SU(k,)—1 as|k,|—. s (kg tw¥(cr) S

The factorS¥(k,) is upward analytic and the fact&f(k,) is (34)
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Wy, ,(ke, 0" k)
Co

1
ke + kS

iy 1 agky(Calky] +caiky) 75
D (iketwY(cgr) S
(35)

s

Likewise, for the generated stress fiefdls, anda, we have

Oxy 1

(ke 0%(cR))S
Cor  k2+k2

iky

KZya—

d
Vs

X (Calky +C2ikx)) : (36)
o, L [ (ke ed(cR)s!
=z keystke—————
Com kg+ks Vs
X (celk] +c2ikx>) : (37)

At this point, we can determine the constaotsandc,. We

recall that\iv,,‘X and\fvuyZ are upward analytic functions, but
in Egs.(34) and(35) both appear to have a pole in the upper
half plane atk,=ilk,|. To remove the pole the term in
square brackets must be zerokat=i|k,|,

0=k2D (iky+ 0"(cg))S"(ky)
+(1_aé)('}’g(kx))zikx(cl|kz|+C2ikx)v (38)

atk,=i|k,|. Similarly, we know thair,, anda,, are down-
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obtain the final expressions for all components of the Fourier
transformed mode Il weight function:

Wi, (K, ,Y,K,) 2ikxAz (e~ 7DY—g )
||, lyv = e —e
R

k,A;—ik,A

+ 2 2o, (42
ki + ks

- A,
Wll,y(kxvy’kz):

ys(va—Ki—K2)

X[(ya+ki+k2)e 79 —2ypyse Y],

(43
~ 2k, A5 B B
W“,Z(kxayykz):ﬁ(e ySy—e '}’Dy)
T TRz
kK,A,—ik, A
e, (44)
k;+k;

wherey=0 andA, and A, are defined in Eq(17). Explic-
itly, they are given in Egs(32) and (33). At y=0" we
recover the earlier results fdfv”,x and\7v|,,Z in Egs.(34) and
(35).

Finally, we shall determine the unknown constegt For
this purpose it is sufficient to evaluate the 3D weight func-
tion aty=0" ands=0 in the 2D limitk,—0. If we apply

this procedure t&,, , in Eq. (42) we obtain

ward analytic functions, and hence, the numerators in Egs.

(36) and (37) must be zero ak,= —i|k,|,

0=K2(y2(k))? = iky(iky+ 0% (CR))(Cy| k| + czikx>sd<k(%§)

at k,=—i|k,|. Equations(38) and (39) determine the con-
stantsc, andc,:

ci=c i):} . D (|kz|_wu(CR))Su(i|kz|)
VK 2] ag1-ad) (k|- wt(cy)
d
as(|:z|+w scs>_) 1 w0
([k| + 0%(cr))S (—ilk,|)
. :C( s )i D (k= w"(cr)S(ilk,])
2K 2[ag1-ad) (k) —w'(cy)

as(| kz| + wd(Cs))
(Ik |+ 0%(cr))SU(—ilk,|)

(41)

|

2

V—ik
as\/a_scocz(oaan)—x-

A 11— -
Wi x(ky)=—1i K,

(45)

Comparison with the known Fourier transformed 2D weight
function in Appendix C yields

D 1
V2ag(1—a?) C2(0.an)

Co: (46)

lll. EXPLICIT FOURIER-TRANSFORMED WEIGHT
FUNCTIONS

The weight functions for modes | and Ill are obtained by
the same Wiener-Hopf method as above. Note that the only
difference between the modes consists of the symmetries in
andy and the asymptotic behavior near the crack tip. In the
case of mode W, , andW, , are symmetric irg, andW, , is
antisymmetric inz. FurthermoreW, , is antisymmetric iry.
Note in the following thaty=0. We have also added a table
of symbols and definitions in Appendix A. The Wiener-Hopf

In the last step of our calculation we substitute back into theprocedure for mode | is simpler than in the case of mode II

potentialsh and¥ in Egs.(18)—(22). We then use E(3) to

and leads to
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FIG. 1. The contour of integration and the position of the branch

points for reals and|s/v|k,||<1, for the integration in Eq(66).

The two contributiond”, andI' yield the separate factors of the

Rayleigh functionS" and S, respectively.

WI,X(kX 1yvkz 1S) =

Wo, [—ikx ,
' +k2+k2)e 1Y
’yé— ki— kg Yo (’YS X Z)

+ 2k, yse™ vsy} , 47

" Wy 3
Wiy (ke Y Ky 8) =5 [ (va+K2+k2)e 70y
S kx - kz

—2(k2+k2)e 9], (48)
- W,
W, (ke Y. K, 8) =—————
|,Z( X y Z ) y%—k)z(—kg

X

%( Y3+ k2+k2)e 7oV
— 2k, vy "Sy} , (49
where
1 78

o™ TR Gkt oMc)S %0

The mode Il weight function has been calculated in Sec.

[I. In summary we have

Wi, (K, YK, ,S) 2ikxA 2 (e 7Y—g 1Y)
1Y S)=——— (€ —e
I, x\ ™) y z yé—ki—kg
kK, A1 — ik A
+ e, (51)
ki +k;

N 2 20 L2 L2\ a—
Wi y(ky,Y Ky, 8) =——————[(yst kit kye s
N B . .c I

—2ypyse Y], (52
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Wi, (K¢, K, ,S) 2k, (e 79— DY)
1) 1S =5 S l(& —€e
I,z Xy z ’yé—ki—kg
k,A,—ik,A
+ e, (53
k;+ k3
where
N 1 D Kk, -
1= T
V2ase,(0) 1 ag 74
S S
P S e U7 ARG I
=— [
2 2ag\ €A0) TP c(0) X
u
Vs (55)

X—!
(ikx+ w"(cgr))S"
D (k= a"(cr)S(ilk,])

(ko = 0"(cs))

as((k| + w%(cs)) ]
(ko + 0%(cr))SH (—ilk )|’

S _1
Vi) "2

ag(1—ad)

(56)

1
2

D (kg —w"(cr)S(ilk,)

(k| —"(cg))
as(k,| + w(cy))

(k] + 0(cr))S (—ilky))

S
vik,]

C2

ag(1—ad)

. (57)

The mode Il weight functions have exactly the same
symmetry iny as the mode Il weight functions, but they have
differentz symmetry, that isWv, , andW, , are antisymmet-
ric in zandW, , is symmetric. Furthermore, the mode Il has
a reversed asymptotic behavior near the crack tip, i.e.,
W, , W, ,~+r and W, ,~1/\r. The same symmetry ily
leads to solutions with similar structure to mode II:

Wi (K, K, S) = 21k Y (e TY—g 79y
11, 1 Y ] — T 5 5 5 -
R S o
k,Y ;1 +ik, Y
_%e—vg, (58)
ks + kS

Wlll,y(any-kps): [(yé+ k)2<+ k?)e_78y

2
ys( 75— ki—K2)

—2ypyse ], (59)
Wiy (K ,Y.K,,S) — 2k Yo CREET )
1 Y S)=——— (& —€e
11, zZ\ ™'x y z 'yé—ki—kg
k,Y,+ik, Y
-t e, (60
ki + k3
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where IV. FACTORIZATION OF THE RAYLEIGH FUNCTION
s s We begin by discussing the conventional factorization, as
1 dl(m) dz(m discussed by Freund] and used by Willis and Mouvchan
=_ 2 k| + 2L ik [6]. Then in the light of this we present our alternative which
Y3 [k Ky | ; .

V2asys d2(0) d>(0) proves computationally much more explicit.

(61 Factoring out the zeros of the Rayleigh function leads to
1 1- a2 a
Ys= e N O
V2agd,(0) D (iky+ w¥(cg))st r(ky)= =D ik 7] (iky+ w"(cr))
Cagl-ad) (ki w"(ce) X (ikx+ 0%(cr))S (k) S'(ky),  (69)

g (i) __ L
! Vlkzl a 2kz D (| kz|_wu(CR))Su(i|kz|)

where " and w® are defined in Eq(27). The function
SU(ky) SU(k,), which is defined by the last equation, has no

(k| + oS (—ilkl)
+ , (63 : .
as(k,| + w¥(cg)) zeros in the complex plane, it is bounded and the prefactor
D=4asap—(1+a?)? is chosen such thas(k,)S%(k,)
S 1 as(l—aé) (k) — 0¥(ce)) —>1_ as |.kx|—>°0. Hence the logarithm qS”(kX)Sd(kx) is
d, W =T oK D . o defined in the whole complex plane and it approaches zero as
ViKz z (k| = @"(cr))S(ilk,]) |k —x. We follow Freund in the decomposition of
. In(S¥(k,) S%(k,)) into two sectionally analytic functions
d _ X X
Ik + 0% cNS(~ilkd) (64) InS'(k) and InS(k,). By means of Cauchy’s integral, we
as(|k,| + w9(cs)) obtain

In S*9(k ):i.
x 2l 1

(66)

_(k§+7'2+Ys(7)2)2_473(7)7D(T)(72+k§)) dr
ud D(i 7— (s/v))2(i 7+ 0" (cr))(i 7+ 0%(cr)) | T K«

which is equivalent to the form given by Willis and Mouvchan.
The contours of integratiohi, andI’; are shown generically in Fig. 1, and can be collapsed down to simple integrals of the
integrand discontinuity along the respective branch cuts. Fostéal cuts lie on the imaginary axis and the integrals simplify

down to
1 A=) yp(in)ys(in)|| dr
SU(k,) =exp — —f arctar( z |27D > ’s > | ), (67)
T J [0Y(cg), 0% (cp)] (ys(iT) +kz—72) T+iky
1 A2 =) | yp(it)ys(in)]| dr
Sk, ) =ex —f arcta z 7o 5 rs(i)| 1. (69)
T J [0%(cp), 0d(cy] (ys(iT)2+k3—172)2 T+iKy
|
This approach has the computational drawback of de- c2
manding a separate integration for each set of values of the R(U)=(1-2u)2+4u1—u S (70)
variablesk,, k,, ands (the last hidden implicitly inys and C%

vp), and for complexs keeping track of the branch cuts is

computationally delicate. Compounded with F_ourler |nte-.|.he functionR(u) has one zero a1|o=c§/c§ and a branch
grals to transform back to real space, we found it too expen- | h I c2/c2 11. O .
sive to obtain real space weight functions. cut along the real intervdlcy/cp,1]. Our strategy is 1o ex-

Our alternative approach starts from the observation thaPress itin factors of the form

(u—u)7, cgch=u;<1, (72)

(s—vikx)“R( —c3(K2+Kk?) | ©9

K.)=
"o cg (s—Viky)?

because such factors have a universal Wiener-Hopf
factorization—see below.
where Factoring out the zeros and its value at infinity, we have
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cé c% Integrating by parts then leads to
Ru=2| =-1]|{u=—|f(u) (72
Cp R
‘ J 1’2 uy(7m)— U
where Inf(u)—0 as|u|—c and is analytic everywhere ex- (u)=ex U2(77 dn), (79)

cept the branch cut along the real interped/c3,1]. We can

EZVSV %%?Ijl(é?lighgb?aﬁzeorem tof(w) in the same spirit as where u;(7) and u,(%) are the smaller and largdreal)
' roots of the equation

f(u)= 1 f Inf(u )d , 73
u)=ex u
271 J branch cutu’ — u 1 4U\/1—U\/U—(C§/C%)
n(u)= p arctan , (76)
1
=exp — —f arctan
p( 7 J[cgcp.1]

(1-2u)?
X4u’ Vi—u'\Ju' —c¥c3 du’
(1-2u")? u’'—u

as plotted in Fig. Zfor Poisson’s ratiov=0.3).
) What makes this approach particularly fruitful is that we

(74) can decompose each term—u;(#), and similarly u
—Uy(7), as follows:

21,2 2 2
—c3(K2+Kk?) —c3 . 1 , )
u—u =—-U =—— | K+ ki+ —————(s—viky)?
= ik T e\ R e Y
(s=vik)? | Vuy(m)) | ug(7) V() )
|
wherea(c)=\1-(v%/c?), and non-negative real part, which leads to branch cuts outwards

along the imaginary axis fronti|k,a(c)c| for w"(c,s) and
wY(c,s) in the complex plane.
w'(c,s)=1la(c)*(sv/c’~ a(c)’k; +5°/c?), (78) For all reals the assignment ok"(c,s) and w%(c,s) is
correct by inspection. Next we note that &) could only
change sign on the imaginary axis & because for
Re(w"%) =0, expression77) would have a pure real root
which is only possible for Re&)=0. Hence the assignments
extend correctly from the real axis to each of the right and
left half planes ofs.
With Egs.(72) and(73) the original functiorr (k,) in Eq.
(f9 can then be written

and the opposite sign of square root édfl(c,s) [also see Eq.
(28)].

We now show that the roots»'(c,s) andiw(c,s) are
trivially assigned correctly in Eq(78), in the sense that
iwY(c,s) remains in the lower complex plane and‘(c,s)
in the upper half plane for all complex We also rely on
v<cg<Cg/\Ui(7;)=c. Here it is important that we take
the standard convention that the square root function retur

1
—2) (s—Vik)?aglk—iw"(cr) I[k—i0(cR)]

1
r(kx):2 -
Cs Cp

In (79

I o vl v

d
el el
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Using the above result that"(c,s) remains in the lower
half-plane and »9(c,s) in the upper half planéor all com-

plexsandv=<cg), respectively, and by comparison with Eq.

(65), we can decomposgk,) into a product of upwards and
downwards analytic factors

(80)

SH(ky) =exp f 01/z|n E

Sk =exp dn|, (81

A. A. AL-FALOU, R. C. BALL, AND H. LARRALDE

i

where(u) is given Eq.(76) and w"(c),

wY(c) were pre-

PRE 61

Simple numerical quadrature schemes applied to the inte-
grals in Eqs(80) and(81) yield the desired factorization of
the form

Siko=11

=1

[

=1

(ko) (82

kx—iwd(

We found Simpson’s rule highly effective; using ten points

\/Uz(ﬂj))

viously defined in Eq(78). In the last equations we have for the caser=0.3 we obtain the exponentsy; and the

also used the fact th&"(k,),S%(k,) — 1 asky— .

zerosu,(»;) andu,(7;) from

N A”j
iy
j=1

Ul(ﬂj)_u)
Uz(77;)—Uu

u—0.49962
u—0.50031

160/ y—0.379559 Y15 u— 0.348595 1/30
u—0.69745 u—0.789035 '

(83

( u— 0.329913 1’15( u-— 0.31682:) 1’30(

u—0.306973 Y15 y—0.299344 1/30
u—0.93642 u—0.961645 ’

u—0.85402 u—0.90158
1/30(

u—0.293476 115 u—0.28921
u—0.97939 u—0.99113

u—0.286602 115 y—0.285714 1/60
u—0.99782 u—1 '

It is important to note that this numerical quadrature in orderV. NEAR CRACK TIP EXPANSION OF THE DYNAMICAL

to obtainA 7;, ui(7;), anduy(»;), needs to be done once,

and most importantly, independently kf, k,, ands, for a
given choice oft2/c3 (which is a function of Poisson’s ratio
only). We have also tested the fact@®¥k,) and S%(k,) in
Eq. (82) against their more conventional form in Eq67)

MODE Il WEIGHT FUNCTION

At this point we anticipate the general structure of the
stability analysis without elaborating on the details which
shall be given in a future paper. As mentioned in Sec. I, the

and(68) for reals. We have found that the relative numerical Progress of a small perturbatidr{x,z) of the crack surface

discrepancy is less than 0.0002 for lgJlalong the real axis.

n(u)

3

ug (n3)

2 0.4 0.6

Cs 2 /cq

FIG. 2. The functionp(u) whose inverses,(») andu,(») are
used in Eq(75), plotted for Poisson’s ratio i8=0.3. u;(#) are to
the left,u,( %) to the right.

is determined by the criterioK[h(x,z)]=0. The total
mode Il stress intensity factdt,, is decomposed as a sum of
loading contributions from near the crack tip and loading
contributions from the crack surface. Hence we require a

Im ky

. _i o (cy) !

\ -1 :ou 1

\ h 1 @7 (cq) - :
\ 10 (GR) !
| &/

. A
4

1
|
v

I
1-

J

1
!
!
I
1
1
1
1
1
L~

FIG. 3. The contour of integration.
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knowledge of the weight function near the crack tip and onwhich can be regarded as two Laplace transformg. iif

the crack surface. In this section we will expand the mode Ik}v(kx)ﬁaﬁkf ask,— +; then

weight function up tor = X?+y?, wherer is the distance

from the crack tip in the comoving frame. As we only have 1 o anlkdy+i(svichan)sgnto)y

the weight function in Fourier coordinatéwith respect to ~ W(X,y)=5—agl'(1+B)2R : Yy

k,) we first need to relate the near crack tip expansion in real (=iX+any) (85)

space to the corresponding terms in Fourier space. To lead-

ing order ink, the Fourier back transforms are of the form wherel'(x) denotes the gamma function. In our analysis it is

(notey=0) useful to note thal’(1+x)=xI'(x) and I'(—3/2)=%/7.

Application of Eq.(85) to the Fourier transformed weight

W(X,y) = i f ” dkxeikxxe—an|kx|y+i(sv/cﬁan)sgnkx)yW(kx), functions _in Eqgs.(42) and (43) and some straightforward

27 ) - algebra yields the asymptotic expansion of the real space
(84) mode Il weight function near the crack tip:

S 1+i 14i—Y S

> i y i——vy >

viky/ 1 Chap Cgas 4 €1 vk, o
- z

—aé c2(0)  2xm VX+iapy - VX+iagy 1—a§ c,(0)

-2 C2

WII,X(Xiyvkzas): 1

s
CZ( u u d
vlk,|) [ ®Y(cs) w"(Cg)+ w"(cg) 1 -
+aglk,| — wY(cr) + a2 Im(\/X+i
c:(0) ( 2 Akl elle as T T ] | g MO oy
s ~sv
N 1+i——vy
CZ 2
v|k 1 cax
. X—l—ia'sy)— | z| sts

|
c,(0) ﬂm WX+iagy

s s
Cq| —— Co| —— -
c2(0) "7 cp(0) 2 o R T
IS . SV IS . SV
- 1+1—— - +1
PPV £ °2(v|kz|) O D B T e S B T3
1 Y 1S = e - e
WY 1702 60 2 X+iagy | 1-a2 €0 27 WX+iapy
s S
g oAag) ot
2 Vlkzl 2 V|kz| (w(CS) o )
as(l—aé) (1+aS) Cz(o) |kZ|+(1+aS) C2(0) 2 +a‘0|kZ| w (CR)
S S
Co| . Cql ——
a2+(1+a§)(3a§—1) 2 V|k2|)(w“(cs)+wd(cs)) ReVX+iagy 4ap | tlvlk] )
S 2(1-ad) c2(0) 27 1-ad| €0 7
s s
CZ 2 Cz T
V|kz| (wu(cs) ) 3aS_1 V|kz|
+ag|k,| — w"(cr) | + U(cg)+ wi(c
02(0) 2 0| Z| LO( R) 2(1—6(%) Cz(o) ((x)( S) O)( S))
s
Cy .
17kl g " g ReyX+iapy
5 ,(0) (w"(cg) + w(Cg) + w"(Cp) + w(Cp)) T"‘pm (87)
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S
Col =7
_4kz V|kz| 1 Sv \/
Wi 2(X,y, Kz, 8) = Im| | 1+i S—y | X+iasy—| 1+i WX+Fia
XY ke 1—a§ c2(0) 27 Céasy s CZDaDy DY
S S
Ci1|l = Co| —— 2
8 k; ! UL 2 vlk |/ [ w"(cs) u as u d
T3 o) T o) | Tz radlkdmeteRrt T 5 (eted (e

S
Cg(‘
1 VIk|> D
X —— Im((X+i agy)¥?— (X+iapy)¥?)+ 2k -
\/ﬁ (« ) ( pY) ) z c»(0) aS(l—aé)Cz(O)
S S
e 1012y T | k] ol S (9% )
N | | 5 +a B ¢
2 Cag’ TR To0) T o) |T 2 Tl TR
‘ P (09 | == Im(X+iagy)*? (69
2ag(1—a2)c,(0) N2m

asr=X%+y?—0. The constang, originates in the asymptotic expansion $f(k,) in Egs.(67) or (82), i.e., S'(k) =1
+iag(|k,l/ky), with

w2l s |

The coefficientsc,(s/v|k,|) andc,(s/v|k,|) are defined in Eqsi40) and (41). We have also used the relationsti#6) to
eliminatec,. The constanp, in the asymptotic expansion &, ,(X,y,k,) is given by[see Eq(90), Sec. VI po=W,; ,(X
=0",y=0y5).

VI. W, v IN REAL SPACE ON THE CRACK SURFACE

For our final evaluation oK, we shall also need the full real space expressiowpf, on the crack surface. Note that the
Fourier back transformation (ﬁ/”,y with respect tk, can be turned into a contour integral in the lower complex half plane;
see the dashed line in Fig. 3. In Fourier space the fun(\l’lqg relates toA} [also see Eq43)], and, hence, it has a pole and
branch cuts in the lower half plane. As the simple pol&.atiw"(cg) does not lie between the semi-infinite branch cuts we
can move these branch cuts to a single finite branch cut along the line betw¥en) andiw"(cs); see Fig. 3. Then the
Fourier back transform collapses to an integral along the finite branch cut betwt@n,) andi»"(cs) and a circle around
the pole akk,=iw"(cgr) (see the solid lines in Fig.)3yielding

S
1| vk
Wll,y(x!y:01k21s):_ | Zl_

V2ag\  €2(0)

- ﬁi_@ sgN[Reli 0"(Ce) — i @¥(cp))1(10"(Ce) — [ 0¥(Co))e

al, ., ol
Cl(m “2l vik]
c2(0) c2(0)

S
(vlkzl> Ya(i0"(Cr)) — w"(Cr) 2+ kS L
w“(CR) . - e @ (cr)X
c2(0) 2(kK2— 0(cr)?) ¥8(i " (cr)S (i w"(CR))

—w'(cp)X

1
X fo dre” ! eg~e%eo) kg +iky (iky+ 09(cR))

(ys(ko) = (K24 k2)2) S (k) va(ky) ¥ (Ky)

(90)
(ys(k) 2+ K5+ K2)* = 16y5(ke) 2y (ko) 2(Ki+ K2)?

at k,=iwU(cp) + (i 0U(cg) —iwY(cp))
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for X<0. Note also that we have replac8d by an expres- of height above the crack plane and Fourier transformed with
sion of the formS"~r (k,)/S [see Eq(29)] in the integral  respect to the other coordinates. The only quantity which
of the above equation. This has been done for numericanters our approximants nonparametrically is Poisson’s ratio,
reasons since by constructio® is better approximated but it is otherwise universal to isotropic linear elastic mate-
along the upper branch cut th&1. For reals we need to rials. It is likely that the same methodology would apply to
take the limit s+i0" or s+i0~ so as the prefactor anisotropic materials, at least when the fracture geometry is
sign[Re(i w"(cs) —iw"(cp))] provides the right sign and is aligned to principal material axis, but we have not investi-
not exactly zero. We observe that tiecomponent of the gated this.

mode Il function on the crack surface has a Taylor expansion We applied our methods to extracting specific details of
in x of the form W, ,(X,y=05s)=po+p;X+--- near the the mode Il weight function in real space coordinates, in
crack tip (for x<0). FurthermoreW, , decays exponen- order to service our calculations of mode | crack stability in
tially with x ase™ "X We know from Sec. V that in the following paper. Full real space dependence requires nu-
forward direction K> 0) W,, , has an expansmn ifX of merical Fourier integrals, and it is vital here that our ap-

proach give explicit functions of the Fourier variables. This
X+ po+ -y ) L
ETZCE);{S_W“'V(X y=08)=---1 Po X near the spares us the full computational cost of one multiplicity of

quadrature.

Other possible applications of our results include the cou-
pling of cracks with sound, and the deflection of moving

It is very unlikely that a closed form exists, without cracks by inhomogeneity. However, to carry these forward in
quadrature or approximation, for the full time space depenfull rests on the coupling of stress intensity to perturbation of
dent weight functions for a moving crack in three dimen-crack geometry, which is the subject of our following paper.
sions. The key difficulty is the Wiener-Hopf factorization of
the Rayleigh function, and here we have contributed an ap-
proach to the quadrature required. This leads to explicit
forms for approximants to the weight functions, as a function A. A. Al-Falou was funded by EPSRC.

VII. CONCLUSION
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APPENDIX A: NOTATION AND DEFINITIONS

2 Elasticity operator in comoving frame
E= 7 Vox -V.C:V
B=n-C:V Boundary operator
a[w]=C:Vw Stress tensor generated by the vector ﬁfld
C Tensor of linear homogeneous, isotropic elasticity
with ComponentsCin = )\5” 5k|+ /'l’(&ik5j| + 5“ 5”() .
Cs Shear wave speed
Cp Dilatational wave speed
Cr Rayleigh wave speed
an=+1—(v?/c?), n=SD,R,
D=4asap—(1+ad)?
oY ¢ | = |k2| ———(1—a?)— \/ 2, S 2(1— )| n=SD,R
"k ol v|k | DTV ] s
s | Ikl \/ s |2
d z 2 2 _
0} Cn'v|kz| 2 V|k |(1 an)-f- apt VK] (1-eap)|, n=SD,R,
s 2 2
1212 _ 2 _
7n(kx,v|kzl) ki tk;+(1—ap ( Ik, k, Ikx) , h=SD,R
ok i \/ ilio" > -k n=SD,R
Yn X1V|kZ| = apl| lw Cn,VlkZ| x|
[Py \/ i| ky— > =S,D,R
7n X1V|kzl - anl X lw Cnivlkz| ’ n= (i R
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S S
_ U _ U d
s 1] -o ("‘Z' oo g1l |kz|)+ as\lkalt o °S’v|kz|))
(5t
vikd/) 2 ag(1—ad) " S ( d S ) S
|kz|—(,z) Cs,m |kz|+w CR,V|kZ| Sd I|kz| |kz|
(|k|—w“c i))SU(.nq ) a(|k|+wdc i)
(sl o WelmetengglfStiltebung) st et oy
2 vk, 2 ag(1—a? ( ) ( S )
S as) _u d -
kel = Cs. Gy lkal+ e CR*v|kz|) ( |kz|)

S andS® are given analytically in Eq80) and (81), and numerically in Eqs(82) and (83).

APPENDIX B: DYNAMICAL MODE II DISPLACEMENT FOR A PLANAR CRACK AND ITS FOURIER TRANSFORM

There are two different approaches to the Fourier transformed mode Il displacement for a moving planar crack. Here we
shall Fourier transform the real space dynamical displacements; however, alternatively, we could have determined the Fourier
transformed displacements directly by the Wiener-Hopf technique as outlined in Sec. Il. The calculation of the real space mode
| displacement is clearly presented in Freund’'s bpbk

First, the mode Il displacement in the comoving frame is expressed in terms of the twopoaengialsd andV 5, which
obey the two-dimensional version of the wave equati@)sand (9). Hence both are expressible in terms of two analytic
functionsG(z) andF(z). We note that the symmetry of the type Il loading yielli§¢x,y)=Im F(x+iapy) and¥;(X,y)
=ReF(x+iagy). Then the boundary conditions on the crack face, which in termis afid G are different from the type |
case, give

Ky 8as ,, LY 4(1+ad) I
F(z )—\/— 33D % G(Z)_\/Z_—MTZ : (BY)
We deduce the displacements for mode II:
2K|| " 2 "
U||’X:— Im [2&5\/X+|C¥Dy_as(1+ as) \/X+|asy], (BZ)
V27uD
\/_ Re[2asapVX+iapy—(1+ad)x+iagy]. (B3)
wuD

In order to Fourier transform these displacement fields we first note thag>for,

1+i y2m|k, | B kXIy1+sgr{kx) B4)
5 :

[* ocriye =1 .

As we can express all Fourier integrals in terms of this integral, we finally obtain the Fourier transformed mode Il displace-
ment for a planar dynamical cracl#0):

“ V—ik

Uy (K, Y) = ﬁ—;:D[ —2age” oY+ ag(1+ aé)e"kx'asV]Tx, (B5)
X

“ Vi k

Uy y(Ky,Y) = \/_M [—2asape” M@oY+ (1+ ad)e Mdosy]——= % (B6)
X

The corresponding fields in the lower half spage&0, are given by the symmetry of the loading mode.

APPENDIX C: FOURIER TRANSFORMED 2D DYNAMICAL MODE Il WEIGHT FUNCTION

We argued earlier in this paper that the weight functions can be determined on the grounds that they obey the homogeneous
equations of elasticity and the boundary conditions on the crack face, and we have knowledge of their leading order divergence
near the crack tip. Following this reasoning, we can deduce that the 2D weight fuli¢jjppis given by
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J
Wop, i~ =, (CY

IX—
whereu,, is the mode Il displacement field for a planar crack. We note #iitx)u;, satisfies all the requirements on the mode
Il weight function. In particular, it has the right ¥ divergence near the crack tip. The constant prefactor is determined from

the condition that the weight function integral of a mode Il stress field has to return the mode Il stress intensity factor. In real
space fory=0, we then have

1 1 1 1
W. = ——— M| 2as—=——« 1+a2—, C2
2D,Il,x \/Zas(l—ag) S\/Z—d S( S) \/Z—S‘| ( )
wzo.ly=—i%Re 2asaoi—<1+aé>i, (C3
27 ag1-a)d) V4 Vzs

wherezy=x+iapy andzs=x+iagy. The original formulas for the mode Il displacement fiald(whose derivative is taken
in the above are given in Appendix B. In Fourier space we haye=(Q) B

. i V—ik
W Kye,Y)= = [2age” MDY — ag(1+ ad)e Masy]—=, c4
20, 1x(Kx»Y) \/Eas(l—aé)[ ag as(1+ag) ] K, (C4
. i Jik
WZD,..,y<kx,y>=m[ZasaDe*'kx'“Dy—<1+aé>e*‘kx‘“sy] : (CH)
s\1— &g

Ky
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